U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

N=

Preprint
UCRL-JC-144895

Using Meta-Data to
Automatically Wrap
Bioinformatics Sources

D. Buttler, T. Critchlow

This article was submitted to
Objects, XML, and Databases
Tampa Bay, FL

October 2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http:/ /apollo.osti.gov /bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http:/ /www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http:/ /www .lInl.gov /tid /Library.html

Using Meta-Data to Automatically Wrap Biolnformatics

Sources *
David Buttler Terence Critchlow
College of Computing Center for Applied Scientific Computing
Georgia Institute of Technology Lawrence Livermore National Laboratory
Atlanta, GA 30332 Livermore, CA 94551
buttler@cc.gatech.edu critchlow1@lInl.gov

1 Introduction

A large amount of bioinformatics data is distributed over the Internet. Typically, this information is
accessible only through custom, web-based query interfaces. These interfaces often include features un-
common in industrial applications such as multiple parameters, a variety of query options that invoke
different support programs, indirection and delay pages, and complex results. If users require infor-
mation from multiple sources, they must pose the appropriate queries at each source individually then
explicitly integrate the results. This solution may be acceptable for a small number of sources, but it
quickly becomes an overwhelming burden for users as the number of sources grows. Currently there are
over 500 bioinformatics sources for biologists to choose from [2], making it infeasible to manually gather
data from a non-trivial fraction of the available sources.

Our goal is to simplify access to bioinformatics data by providing a single access point to a large num-
ber of sources. There have been many similar efforts, but they have not succeeded due to the technical
difficulty of integrating such a large number of complex sources. The fundamental problem is that each
source is fiercely independent. As a result, they use different semantics, customized interfaces, and
unique data formats. Furthermore, they are prone to having their interfaces and formats frequently up-
dated without warning. In order to maintain access to a source, a specialized access program (wrapper)
that keeps pace with the source’s evolution is required.

This paper presents a general meta-data format capable of describing the complex, web-based interfaces
often found in bioinformatics. Because this description provides sufficient information to automatically
generate a wrapper for the associated site, it is an important first step in developing an infrastructure
capable of interacting with a large number of dynamic, heterogeneous data sources. The next section
provides a quick overview of the DARPA Agent Markup Language (DAML) [1], which formed the
starting point for our work. We then present the extensions we made to describe these complex interfaces
in Section 3, and conclude with an outline of how we intend to use this format in Section 4.

*This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-ENG-48.

2 DAML as a Description Language for Web Services

Rather than create a new meta-data format from scratch, we started with the DAML specification.
DAML is an extension of XML [8] and RDF [7] that allows the definition of machine understandable
ontologies. Specifically, we have extended DAML’s web service description language, DAML-S [6]. At
this time DAML-S is still under active development, with version 0.5 released on May 30, 2001.

A service in DAML-S is essentially a web-based interface to data. The DAML-S description of a service
has three parts: a service presents a profile, which indicates what information the service requires (input)
and what the service does (output); it is described by a service model, which indicates how each step
of the service works; and, it supports a service grounding which indicates how to access the service.
For the purposes of our data source description, a profile is the external interface to a web service, the
model represents the components of the service, and the grounding is the detailed information about
how to properly interact with the service interface. Since we are interested primarily in describing how
a service works, we focus on the model and the grounding.

The DAML-S model describes how components of a service interact. The most important characteristic
of this description is the Process, which has inputs, outputs, and effects (real world consequences for
invocation). Processes can represent atomic actions (e.g. find relevant protein structure identifiers given
a disease name), or control flows (e.g. looped, conditional, sequenced [ordered], and parallel [unordered]
execution). For example, the Process of retrieving protein structure information for a particular disease
could be defined as a sequence of two atomic processes: looking up the protein structure identifiers
related to the disease, and retrieving structure information given the structure identifier.

3 Extensions to the DAML Specifications for Wrapper Generation

To complete the interface descriptions of data sources, we need to extend DAML-S to include a detailed
specification for groundings (the current release does not define them). Our definition of a grounding
contains several elements:

(1) A pointer to the Process it grounds

(2) The binding

(3) A specification of how to convert Process inputs into parameters the binding can use

(4) A parser

(5) Links

The definition of (1) is obvious; (2) and (3) are described in Section 3.1; (4) is described in Section 3.2;
and (5) is described in Section 3.3.

3.1 Binding

Our grounding specification uses bindings to invoke different communication protocols for a service
(e.g. HTTP, SOAP, a Java class, etc.). Since every grounding is associated with a particular process,
its inputs and outputs are known. However, each binding must provide a conversion method to map
the Process inputs to a usable format. In this section, we briefly outline three bindings and their
default conversion methods: SOAP, HTTP, and Java. For the SOAP and HTTP bindings we follow
the WSDL [4] specifications as closely as possible. SOAP is straight-forward: since we assume that a
Process’s inputs and outputs exactly match those of a SOAP accessible service, the conversion method
simply returns the original inputs.

Because the HT'TP binding is not a native XML protocol, the Process inputs need to be mapped to
corresponding HTTP form input types. Typically, this requires a three step transformation. First, the
names need to be translated because HTML form names are often abbreviated and somewhat cryptic
(e.g. the field names in a Google search may include ”q”, ”h1”, ”Ir”, and ”safe”) and thus are unlikely to
match Process parameter names. Second, objects described at the Process level must be mapped into a
corresponding text representation, because forms only accept strings as input. While this mapping may
be trivial, we apply a transformation method to ensure generality. Depending on the type of object,
this transformation may be performed by a local executable, Java class, web service, or XSLT script.
Third, there are often values that are passed to the server that are not explicitly set by a user, such as
hidden values or selection boxes that have reasonable defaults. By incorporating these values into the
HTTP binding, we avoid polluting the Process description with a large number of trivial inputs.

The Java binding lets us use an arbitrary Java class as a communication protocol. While this is an
excellent opportunity for extensibility, it can easily defeat the purpose of a meta-data description by
hiding how the service works. It should be used only for simple operations that do not require external
communication or for instances where Java defines the communication protocol (e.g. RMI). For example,
it is often desirable to pause the execution of a Process for a period of time, such as when waiting for
remote results to be computed. An obvious way to represent this delay state is as a binding to a Java
method that sleeps for a specified time (taken as input) before returning.

3.2 Parser

The output of a service can be viewed as a raw stream. While no action is required when the service
and the Process outputs are the same, in general some data post-processing must be performed. Our
parser description specifies how to invoke another service that takes the raw output and returns the
appropriate objects in XML format. We list several types of common parsers in Table 1, along with
how each type is referenced and what input it expects.

Parser Type Referenced by Input
XSLT URL XML
HTTP URL string

Local executable | location of the program in the local file system | string
Java URL of jar file; class name string

Table 1: Parser types

3.3 Links

While the current description of DAML-S allows Processes to be defined in a sequence, it does not
provide a mechanism for describing where the inputs of a Process are obtained. We use links to define
the connections between outputs of one Process and inputs of another, allowing us to logically connect
Processes. Links are also used to provide Process level default and constant values similar to those used
in the HTTP binding, but available to all bindings for a Process.

A simple example of a web service that uses links in its description is the NIH BLAST search [3].
The communication protocol between a wrapper and the search service is shown in Figure 1. A state
machine that implements this protocol is show in Figure 2. This service can be described with three

Processes, corresponding to the states of the state machine: the initial query (A), a wait process that
pauses while the results are computed (B), and a result retrieval process (C). The initial query returns
a delay time and a result identification (RID) string. The wait process immediately following the query
process uses only the delay time, while the retrieval process requires the RID. Note that after the wait
process completes, the results may still not be available. If this happens, the service returns a delay
page rather than the actual results when queried by the result retrieval process.

NIH BLA_ST \
Web Service 4 \ RIDAND delaytime 4 ResitsORdeay page
\ 1
! \
! \ / \
/ \ / \
/ \ / \
Query / \‘ Request R&ultsl’ \‘
Wrapper !

@ ®Submit Query § Reslts End
el oAl
dataflow_ o (©==={e)
B & Request Results
control flow delay -,
_— time

Wait

Figure 2: Control Flow for NIH BLAST Query

4 Conclusion and Future Work

This paper has presented a meta-data format based on DAML-S that allows us to describe complex
interfaces to Web accessible data sources. We hope that this work will speed the evolution of the
DAML-S standard and help establish a common format for complex interface descriptions. However,
our primary motivation for this work has been to make the first steps towards an infrastructure that
can support access to a large number of dynamic, heterogeneous scientific data sources. As such, we
are continuing to develop this infrastructure by extending the XWrap Elite [5] wrapper generator to
use our meta-data descriptions, instead of human interaction, to generate a wrapper for the associated
source. Once completed this program will generate full featured wrappers that conform to a common
query interface and return objects in XML. Providing this uniform source interface will enable different
integration scenarios, from simple multi-source result fusion to techniques that reconcile semantic in-
formation such as data warehouses or federated systems, to be explored. Thus, it is an important first
step in providing a single access point for bioinformatics researchers.

References

[1] DAML+OIL (December 2000). http://www.daml.org/2000/12/daml+oil-index, December 2000.

4

[2]
[3]

[4]

[5]
[6]

[7]

8]

DBCAT, The Public Catalog of Databases. http://www.infobiogen.fr/services/dbcat/, August 2001.

QBlast’s URL API. User’s Guide. hitp://www.ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html, June
2001.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description language
(WSDL) 1.1. Technical report, W3C, March 2001.

W. Han, D. Buttler, and C. Pu. Wrapping Web Data into XML. SIGMOD Record, June 2001.

D. Martin. DAML-S: Semantic Markup for Web Services. http://www.daml.org/services/daml-
$/2001/05/daml-s.html, June 2001.

Resource description framework (RDF) model and syntax specification. Technical report, W3C,
February 1999.

Extensible markup language (XML) 1.0. Technical report, W3C, 1998.

16576 VD 9I0WIRAIT

juaunreda(] UOT}EUIIOFUT TEdTUYD],
A103810qET [BUOLIEN] DIOULIDAI] 9DUIIME |
eIuIofITeD) JO AJISIATUN)

